A cell-body groove housing the new flagellum tip suggests an adaptation of cellular morphogenesis for parasitism in the bloodstream form of Trypanosoma brucei

نویسندگان

  • Louise Hughes
  • Katie Towers
  • Tobias Starborg
  • Keith Gull
  • Sue Vaughan
چکیده

Flagella are highly conserved organelles present in a wide variety of species. In Trypanosoma brucei the single flagellum is necessary for morphogenesis, cell motility and pathogenesis, and is attached along the cell body. A new flagellum is formed alongside the old during the cell division cycle. In the (insect) procyclic form, the flagella connector (FC) attaches the tip of the new flagellum to the side of the old flagellum, ensuring faithful replication of cell architecture. The FC is not present in the bloodstream form of the parasite. We show here, using new imaging techniques including serial block-face scanning electron microscopy (SBF-SEM), that the distal tip of the new flagellum in the bloodstream form is embedded within an invagination in the cell body plasma membrane, named the groove. We suggest that the groove has a similar function to the flagella connector. The groove is a mobile junction located alongside the microtubule quartet (MtQ) and occurred within a gap in the subpellicular microtubule corset, causing significant modification of microtubules during elongation of the new flagellum. It appears likely that this novel form of morphogenetic structure has evolved to withstand the hostile immune response in the mammalian blood.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trypanin, a Component of the Flagellar Dynein Regulatory Complex, Is Essential in Bloodstream Form African Trypanosomes

The Trypanosoma brucei flagellum is a multifunctional organelle with critical roles in motility, cellular morphogenesis, and cell division. Although motility is thought to be important throughout the trypanosome lifecycle, most studies of flagellum structure and function have been restricted to the procyclic lifecycle stage, and our knowledge of the bloodstream form flagellum is limited. We hav...

متن کامل

The Cooperative Roles of Two Kinetoplastid-Specific Kinesins in Cytokinesis and in Maintaining Cell Morphology in Bloodstream Trypanosomes

The cytoskeleton of Trypanosoma brucei, a unicellular eukaryote and a parasitic protozoan, is defined by the subpellicular microtubule corset that is arranged underneath the plasma membrane. We recently identified two orphan kinesins, TbKIN-C and TbKIN-D, that cooperate to regulate the organization of the subpellicular microtubule corset and thereby maintain cell morphology in the procyclic for...

متن کامل

Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions

The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure - the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 ...

متن کامل

Polo-like kinase is expressed in S/G2/M phase and associated with the flagellum attachment zone in both procyclic and bloodstream forms of Trypanosoma brucei.

Trypanosoma brucei, the etiologic agent of African sleeping sickness, divides into insect (procyclic) and bloodstream forms. These two forms are subject to distinct cell cycle regulations, with cytokinesis controlled primarily by basal body/kinetoplast segregation in the procyclic form but by mitosis in the bloodstream form. Polo-like kinases (PLKs), known to play essential roles in regulating ...

متن کامل

SAS-4 Protein in Trypanosoma brucei Controls Life Cycle Transitions by Modulating the Length of the Flagellum Attachment Zone Filament.

The evolutionarily conserved centriole/basal body protein SAS-4 regulates centriole duplication in metazoa and basal body duplication in flagellated and ciliated organisms. Here, we report that the SAS-4 homolog in the flagellated protozoan Trypanosoma brucei, TbSAS-4, plays an unusual role in controlling life cycle transitions by regulating the length of the flagellum attachment zone (FAZ) fil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2013